Positive solution of the Legendre conjecture

T.Nakashima

Abstract

In this paper, the strong form of the Legendre conjecture is shown. The logarithmic function is used to evaluate the minimum intervals between prime numbers ($\geq M^{2}$ and $\leq(M+1)^{2}$).

1

The Möbius function $\mu(n)$ is defined as follows.

$$
\mu(n):= \begin{cases}1 & \text { product of even primes } \\ -1 & \text { product of odd primes } \\ 0 & \text { divided by the square of some prime number }\end{cases}
$$

Let p_{i} be the i th prime number. $\left(p_{1}=2, p_{2}=3, \cdots\right)[f(m)]$ represents a Gauss sign.

Theorem 1. $\left\{\right.$ The minimum interval of the prime numbers between M^{2} to $\left.(M+1)^{2}\right\}<\log M^{2}$.
Proof. Take $M^{2} \leq m \leq(M+1)^{2}$.

$$
\sum_{n ; p_{i} \leq \sqrt{m}}\left[\frac{m}{n}\right] \mu(n)
$$

be the sum of natural numbers have prime factors less than or equal to \sqrt{m}. Then

$$
\left|\sum_{n ; p_{i} \leq \sqrt{m}}\left[\frac{m}{n}\right] \mu(n)\right|=\#\{\text { prime numbers less than m more than } \sqrt{m}\}+1
$$

holds. m^{\prime} is the first prime number after $m . m$ to m^{\prime} does not contain a square number. Then

$$
\sum_{n ; p_{i} \leq M}\left[\frac{m^{\prime}}{n}\right] \mu(n)-\sum_{n ; p_{i} \leq M}\left[\frac{m}{n}\right] \mu(n)=1
$$

is got. Let K be the difference between

$$
\sum_{n ; p_{i} \leq M} \frac{m^{\prime}}{n} \mu(n)
$$

and

$$
\begin{gathered}
\sum_{n ; p_{i} \leq M} \frac{m}{n} \mu(n) \\
\frac{1}{K}\left(\sum_{n ; p_{i} \leq M} \frac{m^{\prime}}{n} \mu(n)-\sum_{n ; p_{i} \leq M} \frac{m}{n} \mu(n)\right)=1 \\
\frac{m^{\prime}-m}{\frac{1}{K}\left(\sum_{n ; p_{i} \leq M} \frac{m^{\prime}}{n} \mu(n)-\sum_{n ; p_{i} \leq M} \frac{m}{n} \mu(n)\right)} \\
=\frac{m^{\prime}-m}{\sum_{n ; p_{i} \leq M}\left[\frac{m^{\prime}}{n}\right] \mu(n)-\sum_{n ; p_{i} \leq M}\left[\frac{m}{n}\right] \mu(n)}
\end{gathered}
$$

This formula is

$$
K \frac{1}{\sum_{n ; p_{i} \leq M} \frac{1}{n} \mu(n)}=m^{\prime}-m
$$

. The next result holds..

$$
\sum_{n ; p_{i} \leq M} \frac{1}{n} \mu(n)=\Pi_{p_{i} \leq M}\left(1-\frac{1}{p_{i}}\right)
$$

The previous formula is

$$
K \Pi_{p_{i} \leq M}\left(1-\frac{1}{p_{i}}\right)^{-1}=m^{\prime}-m
$$

It is seen that about $\Pi_{p_{i} \leq M}\left(1-\frac{1}{p_{i}}\right)^{-1}$ correspond to one prime. So $\Pi_{p_{i} \leq M}(1-$ $\left.\frac{1}{p_{i}}\right)^{-1}$ is the average value of "inteval of primes".

The later part is achieved to the proof of the next result.

$$
\Pi_{p_{i} \leq \sqrt{m}}\left(1-\frac{1}{p_{i}}\right)^{-1} \leq \log m(\text { for large } m)
$$

Let p_{N} be the last prime before \sqrt{m}.

$$
\begin{gathered}
\Pi_{p_{i} \neq p_{N} \leq \sqrt{m}}\left(1-\frac{1}{p_{i}}\right)^{-1}\left(1-\frac{1}{p_{N}}\right)^{-1}-\Pi_{p_{i} \neq p_{N} \leq \sqrt{m}}\left(1-\frac{1}{p_{i}}\right)^{-1} \\
=\Pi_{p_{i} \neq p_{N} \leq \sqrt{m}}\left(1-\frac{1}{p_{i}}\right)^{-1} \frac{1}{p_{N}-1}
\end{gathered}
$$

It is suposed inductively

$$
\Pi_{p_{i} \leq p_{N-1}}\left(1-\frac{1}{p_{i}}\right)^{-1} \leq \log p_{N-1}^{2}
$$

Primally, in the case $\log p_{N-1}<p_{N}-p_{N-1}$,

$$
\begin{gathered}
\Pi_{p_{i} \leq p_{N-1}}\left(1-\frac{1}{p_{i}}\right)^{-1} \frac{1}{p_{N}-1} \leq \log p_{N-1}^{2} \frac{1}{p_{N}-1} \\
<2\left(p_{N}-p_{N-1}\right) \frac{1}{p_{N}-1}
\end{gathered}
$$

The value of this right-hand side is less than $2\left(\log p_{N}-\log p_{N-1}\right)$.
In the case $\log p_{N-1}>p_{N}-p_{N-1}, l$ is taken instead of $1 . l$ satisfies that $\log p_{N-l} \geq p_{N}-p_{N-l+1}$ and $. \log p_{N-l}<p_{N}-p_{N-l}$.

$$
\begin{aligned}
& \Pi_{p_{i} \leq p_{N}}\left(1-\frac{1}{p_{i}}\right)^{-1}-\Pi_{p_{i} \leq p_{N-l}}\left(1-\frac{1}{p_{i}}\right)^{-1}=\Pi_{p_{i} \leq p_{N-l}}\left(1-\frac{1}{p_{i}}\right)^{-1} \frac{1}{p_{N}-1} \\
& +O\left(\frac{1}{m}\right)<\log p_{N-l}^{2} \frac{1}{p_{N}-1}+O\left(\frac{1}{m}\right)<2\left(p_{N}-p_{N-l}\right) \frac{1}{p_{N}-1}+O\left(\frac{1}{m}\right)
\end{aligned}
$$

p_{N-l} is taken instead of p_{N-1}

$$
\Pi_{p_{i} \leq \sqrt{m}}\left(1-\frac{1}{p_{i}}\right)^{-1} \leq \log m(\text { for large } m)
$$

is got
By the constraction, for any $p_{N}-p_{N-l}$, abobe formula holds.
The prime number's long gap causes the defference of $\Pi_{p_{i} \leq \sqrt{m}}\left(1-\frac{1}{p_{i}}\right)^{-1}$ and $\log m$.
$M^{2} \leq p_{\alpha}, p_{\alpha-1} \leq(M+1)^{2}$ give minimum interval of primes. K is taken as less than 1 .

$$
\Pi_{p_{i} \leq M}\left(1-\frac{1}{p_{i}}\right)^{-1}>p_{\alpha}-p_{\alpha-1}
$$

Finally,

$$
\log M^{2}>p_{\alpha}-p_{\alpha-1}
$$

is got. (The reason for K can be taken as less than 1 is that $(M+1)^{2}-M^{2}=$ $2 M+1 \gg \log M^{2}$ (for large M^{2}). For finite M^{2}, It is calculated in the real example. For large M^{2}, "average value" can be used essentially.)

By prime number theorem,

$$
\frac{x}{\pi(x)} \sim \log x
$$

holds. So theorem 1 is some kind of the strong evaluation.

References

[1] Stewart, Ian (2013), Visions of Infinity: The Great Mathematical Problems, Basic Books
[2] Bazzanella, Danilo (2000),"Primes between consecutive squares" (PDF), Archiv der Mathematik, 75(1): 29-34
[3] Francis, Richard L. (February 2004), "Between consecutive squares", Missouri Journal of Mathematical Sciences, University of Central Missouri, Department of Mathematics and Computer Science, 16(1): 51-57
[4] Heath-Brown, D. R. (1988), "The number of primes in a short interval" (PDF), Journal für die Reine und Angewandte Mathematik, 1988 (389): 22-63
[5] Selberg, Atle (1943), "On the normal density of primes in small intervals, and the difference between consecutive primes", Archiv for Mathematik og Naturvidenskab, 47 (6): 87-105
[6] Baker, R. C.; Harman, G.; Pintz, J. (2001), "The difference between consecutive primes, II" (PDF), Proceedings of the London Mathematical Society, 83 (3): 532-562
[7] Oliveira e Silva, Tomás; Herzog, Siegfried; Pardi, Silvio (2014), "Empirical verification of the even Goldbach conjecture and computation of prime gaps up to $4 \cdot 10^{18 \prime \prime}$, Mathematics of Computation, 83 (288): 2033-2060

