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Abstract

In this paper, the strong form of the Legendre conjecture is shown.
The logarithmic function is used to evaluate the minimum intervals
between prime numbers (≥ M2 and ≤ (M + 1)2) .
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The Möbius function µ(n) is defined as follows.

µ(n) :=


1 product of even primes
−1 product of odd primes
0 divided by the square of some prime number

Let pi be the ith prime number. (p1 = 2, p2 = 3, · · · ) [f(m)] represents a
Gauss sign.

Theorem 1. {The minimum interval of the prime numbers between M2 to
(M + 1)2}< logM2.

Proof. Take M2 ≤ m ≤ (M + 1)2.∑
n;pi≤

√
m

[
m

n
]µ(n)

be the sum of natural numbers have prime factors less than or equal to
√
m.

Then

|
∑

n;pi≤
√
m

[
m

n
]µ(n)| = #{prime numbers less than m more than

√
m}+ 1

holds. m′ is the first prime number after m. m to m′ does not contain a
square number. Then∑

n;pi≤M

[
m′

n
]µ(n)−

∑
n;pi≤M

[
m

n
]µ(n) = 1

1



is got. Let K be the difference between∑
n;pi≤M

m′

n
µ(n)

and ∑
n;pi≤M

m

n
µ(n)

1

K
(
∑

n;pi≤M

m′

n
µ(n)−

∑
n;pi≤M

m

n
µ(n)) = 1

m′ −m
1
K
(
∑

n;pi≤M
m′

n
µ(n)−

∑
n;pi≤M

m
n
µ(n))

=
m′ −m∑

n;pi≤M [m
′

n
]µ(n)−

∑
n;pi≤M [m

n
]µ(n)

This formula is

K
1∑

n;pi≤M
1
n
µ(n)

= m′ −m

. The next result holds..∑
n;pi≤M

1

n
µ(n) = Πpi≤M(1− 1

pi
)

The previous formula is

KΠpi≤M(1− 1

pi
)−1 = m′ −m

It is seen that about Πpi≤M(1− 1
pi
)−1 correspond to one prime. So Πpi≤M(1−

1
pi
)−1 is the average value of “inteval of primes”.
The later part is achieved to the proof of the next result.

Πpi≤
√
m(1−

1

pi
)−1 ≤ logm(for large m)

Let pN be the last prime before
√
m.

Πpi ̸=pN≤
√
m(1−

1

pi
)−1(1− 1

pN
)−1 − Πpi ̸=pN≤

√
m(1−

1

pi
)−1

= Πpi ̸=pN≤
√
m(1−

1

pi
)−1 1

pN − 1
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It is suposed inductively

Πpi≤pN−1
(1− 1

pi
)−1 ≤ log pN−1

2

Primally, in the case log pN−1 < pN − pN−1,

Πpi≤pN−1
(1− 1

pi
)−1 1

pN − 1
≤ log p2N−1

1

pN − 1

< 2(pN − pN−1)
1

pN − 1

The value of this right-hand side is less than 2(log pN − log pN−1).
In the case log pN−1 > pN − pN−1, l is taken instead of 1. l satisfies that

log pN−l ≥ pN − pN−l+1 and .log pN−l < pN − pN−l.

Πpi≤pN (1−
1

pi
)−1 − Πpi≤pN−l

(1− 1

pi
)−1 = Πpi≤pN−l

(1− 1

pi
)−1 1

pN − 1

+O(
1

m
) < log p2N−l

1

pN − 1
+O(

1

m
) < 2(pN − pN−l)

1

pN − 1
+O(

1

m
)

pN−l is taken instead of pN−1

Πpi≤
√
m(1−

1

pi
)−1 ≤ logm(for large m)

is got
By the constraction, for any pN − pN−l, abobe formula holds.
The prime number’s long gap causes the defference of Πpi≤

√
m(1 − 1

pi
)−1

and logm.
M2 ≤ pα, pα−1 ≤ (M + 1)2 give minimum interval of primes. K is taken

as less than 1.

Πpi≤M(1− 1

pi
)−1 > pα − pα−1

Finally,
logM2 > pα − pα−1

is got. (The reason for K can be taken as less than 1 is that (M+1)2−M2 =
2M + 1 >> logM2 (for large M2). For finite M2, It is calculated in the real
example. For large M2, “average value” can be used essentially.)

By prime number theorem,

x

π(x)
∼ log x

holds. So theorem 1 is some kind of the strong evaluation.
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