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Abstract

The Riemann Hypothesis is one of the propositions that has been
stated without a proof in ”Ueber die Anzahl der Primzahlen unter
einer gegebenen Grosse” (On the Number of Primes Less Than a Given
Magnitude) ([1] B.Riemann) . The claim is that the real part of the
non-trivial zero point of the zeta function would be 1/2. Proof has not
been given for about 170 years. In this paper, we prove a little strong
theorem of the proposition about the Mobius function equivalent to
the Riemann Hypothesis.

1

Handles propositions equivalent to the Riemann Hypothesis. I express the
Riemann Hypothesis as R.H, and the Mobius function as µ(n).

Next theorem is well-known
Theorem

m∑
n=1

µ(n) = O(m
1
2
+ϵ) ⇔ R.H

I will prove next theorem. I call this proposition as S.R.H.(Strong Riemann
Hypothesis)
Main Theorem(S.R.H.)

m∑
n=1

µ(n) = O(
√
m(log

√
m+ 2)) ⇔

∣∣∣∣∣
m∑

n=1

µ(n)

∣∣∣∣∣ ≤ K
√
m(log

√
m+ 2)

(m ≥ m0)(∃K, ∃m0 > 0)
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I prove the case K ≥ 1, m0 = 2. If this theorem holds, then

m∑
n=1

µ(n) = O(
√
m(log

√
m+ 2)) ⇒

m∑
n=1

µ(n) = O(m
1
2
+ϵ) ⇒ R.H

is got.
Lemma1.1 ∑

n|m

µ(n) = 1(m = 1)

∑
n|m

µ(n) = 0(m ̸= 1)

Proof. First, if m = 1, it is
∑

n|m µ(n) = µ(1) = 1. Second case. There is a
little explanation for this. Letm’s prime factorization bem = pn1

1 pn2
2 pn3

3 · · · pnk
k .

Then it becomes
∑

n|m µ(n) =k C0 −k C1 +k C2 −k C3 + · · ·k Ck = (1− 1)k =
0.

Theorem1 ∑
n≤m

µ(n)
[m
n

]
= 1

Proof.
∑m

m′=1

∑
n|m′ µ(n) = 1 is from Lemma1.1

m∑
m′=1

∑
n|m′

µ(n) = (µ(1)) + (µ(1) + µ(2)) + (µ(1) + µ(3))

+(µ(1) + µ(2) + µ(4)) + · · ·
See µ(n) in this expression as a character. µ(1) appears m times in the
expression. µ(2) appears

[
m
2

]
times that is a multiple of 2 less than m. µ(3)

appears
[
m
3

]
times that is a multiple of 3 less thanm. µ(4) appears

[
m
4

]
times

which is a multiple of 4 less than m. In general, the number of occurrences
of µ(n)(n < m) in this expression is the number

[
m
n

]
that is a multiple of n

below m. That is

1 =
m∑

m′=1

∑
n|m′

µ(n) = (µ(1)) + (µ(1) + µ(2)) + (µ(1) + µ(3))

+(µ(1) + µ(2) + µ(4)) + · · · =
∑
n≤m

µ(n)
[m
n

]
It becomes.
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lemma2.1

If S.R.H. is true ⇒∣∣∣∣∣∣
[ m
k+1

]∑
n=1

µ(n) +

[m
k
]∑

n>[ m
k+1

]

(
m

n
− [

m

n
])µ(n)

∣∣∣∣∣∣ ≤ K

√
m

k
(log

√
m

k
+2)(k = 1, · · · ,m−1)

Proof. Start with
∑[ m

k+1
]

n=1 µ(n). Compare
∑[ m

k+1
]

n=1 µ(n)+
∑m′

n>[ m
k+1

](
m
n
−[m

n
])µ(n)

and
∑m′

n=1 µ(n). It is assumed that m′ is first increased from the orig-
inal value. The former terms add up little by little. Therefore, a posi-
tive increase means that there were many positive terms. If negative terms
and positive terms appear same time from first terms, then increase never
occur. If only positive terms exists, this case is further easy. Therefore∑[ m

k+1
]

n=1 µ(n) +
∑m′

n>[ m
k+1

](
m
n
− [m

n
])µ(n) <

∑m′

n=1 µ(n).(The former is increase

less than 1, the later is increased 1 or more. And the second increase
means more difference of value.) If the minus is the same, the last [m

k
] item∣∣∣∑[ m

k+1
]

n=1 µ(n) +
∑[m

k
]

n>[ m
k+1

](
m
n
− [m

n
])µ(n)

∣∣∣ ≤ K
√

m
k
(log

√
m
k
+ 2).

lemma2.2

−1 ≤ |f(n)| ≤ 1(n = 1, · · · ,m) ⇒

∣∣∣∣∣∑
n≤m

f(n)

∣∣∣∣∣ ≤ m

Proof. I take sum of positive f(n)(n ≤ m) (represent F1) and sum of the
negative f(n)(n ≤ m)(represent F2). |F1|, |F2| ≤ m, |F1 + F2| ≤ m

lemma2.3

2m
1
2 > 1 +

1√
2
+ · · ·+ 1√

m

Proof.

2m
1
2 − 2 =

∫ m

1

x− 1
2dx >

1√
2
+ · · ·+ 1√

m

Theorem2

If S.R.H is true ⇒

∣∣∣∣∣
m∑

n=1

m

n
× µ(n)

∣∣∣∣∣ ≤ 4K(e2(4×e)+
√
m((log

√
m)×m

1
4+1))
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Proof.
m∑

n=1

m

n
× µ(n) =

m∑
n=1

m

n
× µ(n)−

m∑
n=1

[
m

n
]× µ(n) + 1

=
m∑

n>[m
2
]

(
m

n
− [

m

n
])µ(n) +

[m
2
]∑

n>[m
3
]

(
m

n
− [

m

n
])µ(n) + · · ·+

[ m√
m−1

]∑
n>[ m√

m
]

(
m

n
− [

m

n
])µ(n)

+

[
√
m]∑

n=1

(
m

n
− [

m

n
])µ(n) + 1

m√
m−1

−
√
m > 1 is holds, and

√
m− m√

m+1
< 1 also holds. This means there

are the empty terms. So, later the term correspond to n ≤ [
√
m], formula’s

form is changed. By lemma2.1
∣∣∣∑[m

2
]

n=1 µ(n) +
∑m

n>[m
2
](

m
n
− [m

n
])µ(n)

∣∣∣ ≤ K
√
m

(log
√
m

+ 2) Simillary
∣∣∣∑[m

3
]

n=1 µ(n) +
∑[m

2
]

n>[m
3
](

m
n
− [m

n
])µ(n)

∣∣∣ ≤ K
√

m
2
(log

√
m
2
+ 2)

You can continue this work. The terms correspond 1 to [m
1
2 ], |

∑[
√
m]

n=1 (
m
n
−

[m
n
])µ(n)| < [

√
m] (by lemma2.2.) |

∑[m
k
]

n>[ m
k+1

](
m
n
− [m

n
])µ(n)| = |

∑[ m
k+1

]

n=1 µ(n)+∑[m
k
]

n>[ m
k+1

](
m
n
−[m

n
])µ(n)−

∑[ m
k+1

]

n=1 µ(n)| ≤ K(
√

m
k
log (log

√
m
k
+ 2)+

√
m
k+1

(log√
m
k+1

+ 2)) ≤ 2K
√

m
k
(log

√
m
k
+ 2). So, (K is taken as 1 or more.)∣∣∣∣∣

m∑
n=1

m

n
× µ(n)

∣∣∣∣∣ ≤ 2K(1 +
1√
2
+

1√
3
· · ·+ 1

m
1
4

)
√
m(log

√
m+ 2) + [m

1
2 ] + 1

≤ 2K(1 +
1√
2
+

1√
3
· · ·+ 1

([m
1
2 ])

1
2

)
√
m(log

√
m+ 2) + [m

1
2 ] + 1 ≤ 4K(e2

(4× e) +
√
m((log

√
m)×m

1
4 + 1))

Get. (I used lemma 2.3,
∫ [m

1
2 ]

1
x− 1

2 = 2([m
1
2 ])

1
2 − 2 < 2m

1
4 − 2.∑m

n=1 µ(n) and
∑m

n=1(
m
n
− [m

n
])µ(n) each term is less than 1, and appears at

the same time. So, roughly
∑m

n=1 µ(n) ≈
∑m

n=1
m
n
× µ(n) − 1 would work.

However, I could not prove it. I write it as ”Conjecture” in below.

Conjecture

m∑
n=1

µ(n) ≈
m∑

n=1

m

n
× µ(n)
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lemma3.1∑
n≤

√
m

[

√
m

n
] =

∑
n≤[

√
m]

[
[
√
m]

n
] = 1(m is natural number.)

Proof. n = 2 · · · [
√
m] case, [

√
m]−1+n ≥

√
m ⇒ [

√
m
n
] = [ [

√
m]
n

], n = 1 case,

[
√
m
1
] = [ [

√
m]
1

]. By theorem1,
∑

n≤[
√
m][

[
√
m]
n

] = 1

lemma3.2

logm+ 1 > 1 +
1

2
+ · · ·+ 1

m

Proof.

logm =

∫ m

1

1

x
dx >

1

2
+ · · ·+ 1

m

Theorem3 ∑
n<m

µ(n) = O(
√
m log(m))

I will prove that step by step.

Proof. Step1) Firstly use induction method. Assuming that ”The absolute
value of

∑
1≤n≤M µ(n) is (there exist fixed K,) K

√
M×(log

√
M+2) against

2 ≤ M < m”. I take K 1 or more. From theorem1∑
n≤

√
m

µ(n)
[m
n

]
+

∑
√
m<n≤m

µ(n)
[m
n

]
= 1

If I can use induction method,
∑

n≤
√
m µ(n) is the induction’s

√
m version.

(I supose m ≥ 4, 2 ≤ m < 4(≤ e27) case, that is treated later.) Then,∑
n≤

√
m µ(n)’s size is less than Km

1
4 (logm

1
4 + 2). By lemma2.2, Using∑

n≤
√
m µ(n)[m

n
] and

∑
n≤

√
m µ(n)m

n
. These are [

√
m] terms, so the differ-

ence of size is less than [
√
m].

∑
n≤

√
m µ(n)m

n
=

√
m

∑
n≤

√
m µ(n)

√
m
n

=
√
m×

√
m

[
√
m]

∑
n≤

√
m µ(n) [

√
m]
n

. By Theorem2, the size is less than K
√
m

√
m

[
√
m]

×
(4K(e(4×e

1
2 )+m

1
4 (logm

1
4 )×m

1
8+1)) (Note: By lemma3.1,

∑
n≤

√
m µ(n)[m

n
] ̸=
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√
m

∑
n≤

√
m[

√
m
n
] =

√
m.) From above formula, confirm the two formula in below,∣∣∣∣∣∣

∑
n≤

√
m

µ(n)
[m
n

]∣∣∣∣∣∣ < K
m

[
√
m]

× (e(4× e
1
2 ) +m

1
4 (logm

1
4 )×m

1
8 + 1) (1)

∣∣∣∣∣∣
∑

√
m<n≤m

µ(n)
[m
n

]∣∣∣∣∣∣ < K
m

[
√
m]

× (e(4× e
1
2 )+m

1
4 (logm

1
4 )×m

1
8 +1)+1 (2)

The following is obtained by calculation for (2). First term is sum of all terms
satisfy

[
m
n

]
= [

√
m] − 1, m/

√
m =

√
m ≥ [

√
m] and m/(m/(

√
m − 1)) =√

m− 1 ≥ [
√
m− 1], (m/(m/(

√
m− 1) + 1) = m(

√
m− 1)/(m+

√
m− 1) <√

m− 1,) so the range is
√
m to m/(

√
m− 1). Secondary term is sum of all

terms satisfy
[
m
n

]
= [

√
m]− 2, m/(m/(

√
m− 2)) ≥ [

√
m− 2]. The range is

m/(
√
m− 1) to m/(

√
m− 2). The last term satisfy

[
m
n

]
= 1, that is m

2
to m.∑

√
m<n≤m

µ(n)
[m
n

]
= (

[√
m
]
− 1)×

∑
√
m<n≤m/(

√
m−1)

µ(n) + (
[√

m
]
− 2)×

∑
√
m/(

√
m−1)<n≤m/(

√
m−2)

µ(n) + · · ·+ 1×
∑

m/2<n≤m

µ(n)

Step2) Transform by having the positive term element and the negative term
element are moved to the left side.Noted that do not touch that [

√
m] −

1, [
√
m] − 2 · · · , 1 in the transformation. Also, noted that use +1 and -1 at

the same time. Additionally, the left side’s absolute value takes less than
K m

[
√
m]

× (e(4 × e
1
2 ) + m

1
4 (logm

1
4 ) × m

1
8 + 1) + 1. The left side’s number

is not that important. The work will carry out following later. K
√
m ×√

m > K(
√
m + 2) × (e(4 × e

1
2 ) + m

1
4 (logm

1
4 ) × m

1
8 + 1) + 1 > K m

[
√
m]

×

(4m
1
4 ((logm

1
4 + 2)m

1
8 + 1) + 1) + 1 >

∣∣∣∑√
m≤n≤m µ(n)

[
m
n

]∣∣∣ for m > e27.

m ≤ e27 case treated later. ( m
[
√
m]

<
√
m+2 ⇔ (

√
m− [

√
m])(

√
m+[

√
m]) <

2
√
m.) Eventually,all the right side of the absolute value is less than K times

√
m. Put

∣∣∣∑n≤
√
m µ(n)

∣∣∣ less than √
m into calculation. I can complete the

induction method.
the last step) After transformation

left side = (
[√

m
]
−1)×

∑
µ(n)+(

[√
m
]
−2)×

∑
µ(n)+· · ·+1×

∑
µ(n)

All the absolute value of the right side is less than K times
√
m.

(
[√

m
]
− 1)×

∑
µ(n)
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From here. (It might be 0.)
∑

µ(n) is less than 1
[
√
m]−1

K
√
m. By lemma3.2∣∣∣∣∣∣

∑
√
m<n≤m

µ(n)

∣∣∣∣∣∣ = K(
√
m)(

1

[
√
m]

+
1

[
√
m]− 1

+· · ·+1) < K(
√
m(log [

√
m]+1))

∣∣∣∣∣∑
n≤m

µ(n)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

n≤
√
m

µ(n) +
∑

√
m<n≤m

µ(n)

∣∣∣∣∣∣ ≤ K
√
m(log[

√
m] + 2)

log[
√
m] + 2 ≤ log

√
m + 2 ≤ 1

2
logm + 1

2
logm = logm, for m > e4.

|
∑

n≤m µ(n)| <
√
m logm, (2 ≤ m ≤ e27) is checked by computer.

Noted,I will mention that the transformation will be confirmed enough till
the end in the theorem3’s part2. Noted that K can be 1 (If conjecture3.3 is

true.) and use induction method you will get |
∑m′

n=1 µ(n)| <
√
m′(log

√
m′+

2)(m′ < m) by S.R.H. This evaluation means Mobius function takes ”average
”value for any m′ < m. In the work of theorem3’s step2, it become useless,
the left side takes sufficiently positive, and the right side is all negative at
first and these are lower than −

√
m and the rest of these are positive till

the end and and all over
√
m. It is the same when the left side is negative.

These cases can not occur. For example, he bias of positive and negative is
m

1
4 (logm

1
4 + 2) near

√
m, and the bias is

√
2m

1
4 (log 2m

1
4 + 2) near 2

√
m.

2
√
m corresponds just half of terms. There is [

√
m
2
] pieces.(m

1
4 (logm

1
4 +

2)+
√
2m

1
4 (log 2m

1
4 +2) << [

√
m
2
] The first terms takes enough positive and

negative. These terms transformed with some terms that biased positive
or negative, the left side does not satisfy ”useless case” condition. (Like
this, I use Mobius function’s ”average” property as the terms take positive
and negative enough and the terms do not take extremely large value.)The
transformation will be confirmed enough till the end

Special thanks: I was very grateful to my friend H. Tokitu for translating in
English. I would like to express my gratitude to him.
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