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Abstract

First, we prove the relation of the sum of the mobius function and
Riemann Hypothesis. This relationship is well known. I prove next
section, without any tool we prove Riemann Hypothesis about mobius
function. This is very chalenging attempt.
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We write R.H. as the omission of Riemann Hypothesis. µ(n) is the mobius
function,

Theorem 1.1.
m∑

n=1

µ(n) = O(
√
m log(m)) ⇔ R.H

proof. [1] We define M(x) that is called Mertens function.

M(x) :=
x∑

n=1

µ(n)

1

ζ(s)
=

∑ µ(n)

ns

1

ζ(s)
=

∫ ∞

x=1

1

xs
d(M(x))
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d(M(x)) is Stieltjes integral.

= [M(x)x−s] + s

∫ ∞

x=1

M(x)x−s−1dx

M(x) < O(
√
x log(x)) ⇒ This integral may not converge on Re(s) = 1

2
and

must converge on Re(s) ̸= 1
2

2

We prove Riemann Hypothesis in this chapter.

Lemma 2.1. ∑
n|m

µ(n) = 1(m = 1)

∑
n|m

µ(n) = 0(m ̸= 1)

proof. The case m = 1,
∑

n|m µ(n) = µ(1) = 1 is clear. m ̸= 1, We factorise

m = p1
n1p2

n2p3
n3 · · · pknk . We ignore zero term,

∑
n|m µ(n) = kC0 − kC1 +

kC2 − kC3 + · · · kCk = (1− 1)k = 0.

[] is the Gauss sign.

Theorem 2.1. ∑
n≤m

µ(n)
[m
n

]
= 1

proof. By lemma2.1,
∑m

m′=1

∑
n|m′ µ(n) = 1.

m∑
m′=1

∑
n|m′

µ(n) = (µ(1))+(µ(1)+µ(2))+(µ(1)+µ(3))+(µ(1)+µ(2)+µ(4))+· · ·

In this formula, we watch µ(n) as a character. µ(1) appears m times. µ(2)
appears the number of the numbers of multiple of 2 lower than m that is

[
m
2

]
times. µ(3) appears the number of the numbers of multiple of 3 lower than
m that is

[
m
3

]
times. µ(4) appears the number of the numbers of multiple of

4 lower than m that is
[
m
4

]
times. Generally,in this formula, µ(n)(n ≤ m)
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appears the number of the numbers of multiple of n lower than m that is[
m
n

]
times. So we get

1 =
m∑

m′=1

∑
n|m′

µ(n) = (µ(1))+(µ(1)+µ(2))+(µ(1)+µ(3))+(µ(1)+µ(2)+µ(4))+

· · · =
∑
n≤m

µ(n)
[m
n

]

Theorem 2.2. ∑
n≤m

µ(n) = O(
√
m log(m))

proof. First,we use induction method.We assume ”Form0 < M < m,the ab-
solute value of

∑
1≤n≤M µ(n) is less than constantK-multiple of

√
M × log

√
M”.

We take m0 is big enohgh.
By Theorem2.1, ∑

n≤
√
m

µ(n)
[m
n

]
+

∑
√
m<n≤m

µ(n)
[m
n

]
= 1

More ∑
n≤

√
m

µ(n)

[√
m

n

]
×

√
m = 1×

√
m

But ∑
n≤

√
m

µ(n)
[m
n

]
̸=

√
m

So, we take α0 a little larger than
√
m. We supose∣∣∣∣∣∑

n≤α0

µ(n)
[m
n

]∣∣∣∣∣ < √
m

Why α0 and
√
m near ? ∑

n≤α0

µ(n)
m

n
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∑
n≤α0

µ(n)
[m
n

]
This two formulas’ value is almost same. In some example, we see α0.
m = 10000 case, ∑

n≤
√
m

µ(n)
[m
n

]
= 311

311/100, so about 3 will be vanished at α0.
In this case, ∑

n≤
√
m

µ(n)×
√
m = 1× 100

∑
n≤

√
m

µ(n)
m

n
= 311.315 · · ·

∑
n≤103

µ(n)
[m
n

]
= 17

∑
n≤

√
m

µ(n)×
√
m = 1× 100

Next calculation result is needed later.∑
n≤103

µ(n) = −2

But next result is very strong. ∑
n≤100

µ(n) = 1

m = 1000000 case, ∑
n≤

√
m

µ(n)
[m
n

]
= 4407

4407/1000, so about 4 will be vanished at α0.
In this case ∑

n≤
√
m

µ(n)×
√
m = 2× 1000

∑
n≤

√
m

µ(n)
m

n
= 4411.87 · · ·
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m = 100000000 case, ∑
n≤

√
m

µ(n)
[m
n

]
= −208247

−208247/10000, so about −20 will be vanished at α0.
In this case, ∑

n≤
√
m

µ(n)×
√
m = −23× 10000

∑
n≤

√
m

µ(n)
m

n
= −208269.976 · · ·

Next 2 formula is got. ∣∣∣∣∣∑
n≤α0

µ(n)
[m
n

]∣∣∣∣∣ < √
m (1)

∣∣∣∣∣ ∑
α0<n≤m

µ(n)
[m
n

]∣∣∣∣∣ < √
m− 1 (2)

We do not use (1), we use ∣∣∣∣∣∑
n≤α0

µ(n)

∣∣∣∣∣ < √
m

∑
α0<n≤m

µ(n)
[m
n

]
= (

[√
m
]
− 1)×

∑
α0<n≤m/

√
m−1

µ(n) + (
[√

m
]
− 2)×

∑
m/

√
m−1<n≤m/

√
m−2

µ(n) + · · ·+ 1×
∑

m/2<n≤m

µ(n)

We take i maximum value satisfies m√
m−i+1

< m
log2

√
m
.We calculate well,K ×

(
√
m − 1) is larger than right side all term’s order. plus term and mi-

nus term exist so we can do this. The element of plus term delete with
coeficient either, and the element of minus term delete with coeficient ei-
ther. But (

√
m − 1), (

√
m − 2) · · · , 1 must not change. And 1 and -1 use

same time. The baddest case, the result of cancelalation, the left side’s
absolute value is greater than

√
m − 1, we calculate right side minus (or

plus )　
√
m − 1. We calculate terms wuthout later i-term.We take first
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term and other term plus minus cancelalation,the left side of this formula is
gradually transeformed as it’s absolute value is less than

√
m − 1.We con-

tinue the calculation. By assumption,
∣∣∣∑√

m<n≤ m
m−i+1

µ(n)
∣∣∣’s absolute value

is less than K ×
√

m
m−i+1

log
√

m
m−i+1

< K ×
√
m.More, we take β0 be-

fore i term.
∣∣∣∑1≤n≤β0

µ(n)[m
n
]
∣∣∣ is less than

√
m − i + 1.By α0, β0, the

terms between α0 and β0 is all very small after cancelalation.So less than
K ×

√
m.the terms between β0 and m is all very small after cancelalation.

By
∑

1<n≤β0
µ(n)

[
m
n

]
+
∑

β0<n≤m µ(n)
[
m
n

]
= 1, so less than K ×

√
m,too

All terms is less than K ×
√
m.

First induction is correct by later calculation.The statement is ”For m0 <
M ≤ m(specially M = m),the absolute value of

∑
1≤n≤M µ(n) is less than

constant K-multiple of
√
M × log

√
M”. Next order’s property is impor-

tant.If f(x), g(x) is same sign, then

O(f(x) + g(x)) = O(max|f(x)|, |g(x|)

(
[√

m
]
− 1)×

∑
µ(n) + (

[√
m
]
− 2)×

∑
µ(n) + · · ·+ 1×

∑
µ(n)

This formula is right side of formula that already done to delete. First we
calculate

(
[√

m
]
− 1)×

∑
µ(n)

(This term may be 0)
∑

µ(n) has smaller order than K × (
√
m − 1) times

1

([
√
m]−1)

Repeat similler argument, by log
√
m ≈ 1

([
√
m])

+ 1

([
√
m]−1)

+ · · ·+ 1∣∣∣∣∣ ∑
α0<n≤m

µ(n)

∣∣∣∣∣ < K((
√
m− 1)× log

√
m)

(Here,We only caluculate one of plus term’s sum and minus term’s sum)
Induction method is proved.∑
n≤m

µ(n) = O(
∑
n≤α0

µ(n)+
∑

α0<n≤m

µ(n)) = O(
√
m log(

√
m)) = O(

√
m log(m))
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